Search results for "Phase modulation"
showing 10 items of 170 documents
Tunable source of infrared pulses in gas-filled hollow core capillary
2020
International audience; We report a tunable source that generates pulses in the infrared from an optical parametric amplification in a gas-filled hollow core capillary based on four-wave mixing process, in which the phase matching strongly depends on the gas pressure and the pump. In our case, we have generated pulses from 1 to 1.6 m in the sub-µJ level together with a parametric amplification in the visible.
Simple guidelines to predict self-phase modulation patterns
2018
International audience; We present a simple approach to predict the main features of optical spectra affected by self-phase modulation (SPM), which is based on regarding the spectrum modification as an interference effect. A two-wave interference model is found sufficient to describe the SPM-broadened spectra of initially transform-limited or up-chirped pulses, whereas a third wave should be included in the model for initially down-chirped pulses. Simple analytical formulae are derived, which accurately predict the positions of the outermost peaks of the spectra.
Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbit/s
2008
Topic: Nonlinear optics; International audience; In this work, we numerically investigate the performances of optical regenerators based on self-phase modulation and spectral offset filtering at 40 Gbit/s. We outline the different effects affecting the device performances and explain the choice of the optimal working power. The impact of the regenerator on the output signal is also analysed through a statistical approach. Both single- and double-stage configurations are investigated.
Interpretation of negative birefringence observed in strong-field optical pump-probe experiments: High-order Kerr and plasma grating effects
2013
The analysis of negative birefringence optically induced in major air components (Loriot et al., [1, 2]) is revisited in light of the recently reported plasma grating-induced phase-shift effect predicted for strong field pump-probe experiments (Wahlstrand and Milchberg, [3]). The nonlinear birefrin- gence induced by a short and intense laser pulse in argon is measured by femtosecond time-resolved polarimetry. The experiments are performed with degenerate colors, where the pump and probe beam share the same spectrum, or with two different colors and non-overlapping spectra. The in- terpretation of the experimental results is substantiated using a numerical 3D+1 model accounting for nonlinear…
Towards CEP stable sub two cycle IR pulse compression with bulk material
2010
We demonstrate both experimentally and numerically that self-steepening during propagation in a hollow-fiber followed by linear propagation through glass in the anomalous dispersion enables pulse compression down to 1.9 cycles at 1.8 micron wavelength.
Experimental generation of optical flaticon pulses
2013
International audience; We experimentally investigate the nonlinear reshaping of a continuous wave which leads to chirp-free and flat-top intense pulses or flaticons exhibiting strong temporal oscillations at their edges and a stable self-similar expansion upon propagation of their central region. This study was performed in the normal dispersion regime of a non-zero dispersion-shifted fiber and involved a sinusoidal phase modulation of the continuous wave. Our fiber optics experiment is analogous to considering the collision between oppositely directed currents near the beach, and it may open the way to new investigations in the field of hydrodynamics.
Electrostrictive cross-phase modulation of periodic pulse trains in optical fibers
1998
Electrostriction-induced cross-phase modulation between subsequent bits of a nonreturn-to-zero pulse train in optical fibers leads to nonlinear frequency shifts of opposite sign for the 1’s and the 0’s. Direct experimental measurements of the electrostrictive and Kerr-induced nonlinear phase shift across the bit profiles agree well with the theoretical modeling.
Volume integrated phase modulator based on funnel waveguides for reconfigurable miniaturized optical circuits.
2015
We demonstrate the integration of a miniaturized 30(x) μm × 30(y) μm × 2.7(z) mm electro-optic phase modulator operating in the near-IR (λ = 980 nm) based on the electro-activation of a funnel waveguide inside a paraelectric sample of photorefractive potassium lithium tantalate niobate. The modulator forms a basic tassel in the realization of miniaturized reconfigurable optical circuits embedded in a single solid-state three-dimensional chip.
Numerical Maps for Fiber Lasers Mode Locked with Nonlinear Polarization Evolution: Comparison with Semi-Analytical Models
2008
We have used a fully vectorial model based on two coupled nonlinear Schrodinger equations to study mode locking and pulse generation initiated and stabilized by nonlinear polarization evolution in a stretched pulse, double-clad, Yb-doped, fiber laser. The model takes explicitly into account gain saturation, finite amplification bandwidth, Kerr-induced self- and cross-phase modulations, group velocity dispersion, polarization control, and linear birefringence. Complete maps versus the orientation of intra-cavity wave-plates have been established. They comprise a large variety of pulse regimes that can be simply obtained by turning the intracavity wave-plate: stable single pulse per round tri…
Generation of localized pulses from incoherent wave in optical fiber lines made of concatenated Mamyshev regenerators
2008
International audience; We investigate the novel properties of optical fiber lines made of Mamyshev regenerators (MRs) based on self-phase modulation and subsequent spectral filtering. In particular, we show that such a regenerator line can be used to generate random sequences of optical pulses from an incoherent wave. This behavior is related to the existence of stable eigenpulses that can propagate unchanged through the regenerator line and act as attractors for incoming pulses. By changing the regenerator parameters, we also report the existence of multiple eigenpulses and limit cycles. Finally, we demonstrate that MRs could be used as efficient nonlinear gates in fiber laser cavities.